КОНИЧЕСКИЕ СЕЧЕНИЯ: АНАЛИТИЧЕСКИЙ ПОДХОД - ορισμός. Τι είναι το КОНИЧЕСКИЕ СЕЧЕНИЯ: АНАЛИТИЧЕСКИЙ ПОДХОД
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι КОНИЧЕСКИЕ СЕЧЕНИЯ: АНАЛИТИЧЕСКИЙ ПОДХОД - ορισμός

КРИВАЯ, КОТОРУЮ МОЖНО ПОЛУЧИТЬ КАК ПЕРЕСЕЧЕНИЕ КОНУСА И ПЛОСКОСТИ
Конические сечения; Фокус (в математике); Коника (геометрия)
  • right
  • Конические сечения: <span style="color:yellow;background-color:grey;">окружность</span>, <span style="color:red;background-color:lightgrey;">эллипс</span>, <span style="color:blue;background-color:lightgrey;">парабола</span> (плоскость сечения параллельна образующей конуса), <span style="color:green;background-color:lightgrey;">гипербола</span>.
  • Три основных конических сечения
  • <span style="color:#ff0000;">Эллипс (''e''=1/2)</span>, <span style="color:#00ff00;">парабола (''e''=1)</span> и <span style="color:#0000ff;">гипербола (''e''=2)</span> с фиксированными фокусом ''F'' и директрисой.
  • Эллипс (синий) как коническое сечение, разделяющее [[шары Данделена]]; директрисы эллипса (Df1 и Df2), его фокусы (f1 и f2) и эксцентриситет (e)
  • [[Теорема Паскаля]] для эллипса

КОНИЧЕСКИЕ СЕЧЕНИЯ: АНАЛИТИЧЕСКИЙ ПОДХОД      
К статье КОНИЧЕСКИЕ СЕЧЕНИЯ
Алгебраическая классификация. В алгебраических терминах конические сечения можно определить как плоские кривые, координаты которых в декартовой системе координат удовлетворяют уравнению второй степени. Иначе говоря, уравнение всех конических сечений можно записать в общем виде как
где не все коэффициенты A, B и C равны нулю. С помощью параллельного переноса и поворота осей уравнение (1) можно привести к виду
ax2 + by2 + c = 0
или
px2 + qy = 0.
Первое уравнение получается из уравнения (1) при B2 . AC, второе - при B2 = AC. Конические сечения, уравнения которых приводятся к первому виду, называются центральными. Конические сечения, заданные уравнениями второго вида с q ??0, называются нецентральными. В рамках этих двух категорий существуют девять различных типов конических сечений в зависимости от знаков коэффициентов.
1) Если коэффициенты a, b и c имеют один и тот же знак, то не существует вещественных точек, координаты которых удовлетворяли бы уравнению. Такое коническое сечение называется мнимым эллипсом (или мнимой окружностью, если a = b).
2) Если a и b имеют один знак, а c - противоположный, то коническое сечение - эллипс (рис. 1,а); при a = b - окружность (рис. 6,б).
3) Если a и b имеют разные знаки, то коническое сечение - гипербола (рис. 1,в).
4) Если a и b имеют разные знаки и c = 0, то коническое сечение состоит из двух пересекающихся прямых (рис. 6,а).
5) Если a и b имеют один знак и c = 0, то существует только одна действительная точка на кривой, удовлетворяющая уравнению, и коническое сечение - две мнимые пересекающиеся прямые. В этом случае также говорят о стянутом в точку эллипсе или, если a = b, стянутой в точку окружности (рис. 6,б).
6) Если либо a, либо b равно нулю, а остальные коэффициенты имеют разные знаки, то коническое сечение состоит из двух параллельных прямых.
7) Если либо a, либо b равно нулю, а остальные коэффициенты имеют один знак, то не существует ни одной действительной точки, удовлетворяющей уравнению. В этом случае говорят, что коническое сечение состоит из двух мнимых параллельных прямых.
8) Если c = 0, и либо a, либо b также равно нулю, то коническое сечение состоит из двух действительных совпадающих прямых. (Уравнение не определяет никакого конического сечения при a = b = 0, поскольку в этом случае исходное уравнение (1) не второй степени.)
9) Уравнения второго типа определяют параболы, если p и q отличны от нуля. Если p . 0, а q = 0, мы получаем кривую из п. 8. Если же p = 0, то уравнение не определяет никакого конического сечения, поскольку исходное уравнение (1) не второй степени.
Вывод уравнений конических сечений. Любое коническое сечение можно также определить как кривую, по которой плоскость пересекается с квадратичной поверхностью, т.е. с поверхностью, задаваемой уравнением второй степени f (x, y, z) = 0. По-видимому, конические сечения были впервые распознаны именно в этом виде, а их названия (см. ниже) связаны с тем, что они были получены при пересечении плоскости с конусом z2 = x2 + y2. Пусть ABCD - основание прямого кругового конуса (рис. 7) с прямым углом при вершине V. Пусть плоскость FDC пересекает образующую VB в точке F, основание - по прямой CD и поверхность конуса - по кривой DFPC, где P - любая точка на кривой. Проведем через середину отрезка CD - точку E - прямую EF и диаметр AB. Через точку P проведем плоскость, параллельную основанию конуса, пересекающую конус по окружности RPS и прямую EF в точке Q. Тогда QF и QP можно принять, соответственно, за абсциссу x и ординату y точки P. Получившаяся кривая будет параболой.
Построение, представленное на рис. 7, можно использовать для вывода общих уравнений конических сечений. Квадрат длины отрезка перпендикуляра, восстановленного из любой точки диаметра до пересечения с окружностью, всегда равен произведению длин отрезков диаметра. Поэтому
y2 = RQ?QS.
Для параболы отрезок RQ имеет постоянную длину (так как при любом положении точки P он равен отрезку AE), а длина отрезка QS пропорциональна x (из соотношения QS/EB = QF/FE). Отсюда следует, что
где a - постоянный коэффициент. Число a выражает длину фокального параметра параболы.
Если угол при вершине конуса острый, то отрезок RQ не равен отрезку AE; но соотношение y2 = RQ?QS эквивалентно уравнению вида
где a и b - постоянные, или, после сдвига осей, уравнению
являющемуся уравнением эллипса. Точки пересечения эллипса с осью x (x = a и x = -a) и точки пересечения эллипса с осью y (y = b и y = -b) определяют соответственно большую и малую оси. Если угол при вершине конуса тупой, то кривая пересечения конуса и плоскости имеет вид гиперболы, и уравнение приобретает следующий вид:
или, после переноса осей,
В этом случае точки пересечения с осью x, задаваемые соотношением x2 = a2, определяют поперечную ось, а точки пересечения с осью y, задаваемые соотношением y2 = -b2, определяют сопряженную ось. Если постоянные a и b в уравнении (4a) равны, то гипербола называется равнобочной. Поворотом осей ее уравнение приводится к виду
xy = k.
Теперь из уравнений (3), (2) и (4) мы можем понять смысл названий, данных Аполлонием трем основным коническим сечениям. Термины "эллипс", "парабола" и "гипербола" происходят от греческих слов, означающих "недостает", "равен" и "превосходит". Из уравнений (3), (2) и (4) ясно, что для эллипса y2 < (2b2/a) x, для параболы y2 = (a) x и для гиперболы y2 (2b2/a) x. В каждом случае величина, заключенная в скобки, равна фокальному параметру кривой.
Сам Аполлоний рассматривал только три общих типа конических сечений (перечисленные выше типы 2, 3 и 9), но его подход допускает обобщение, позволяющее рассматривать все действительные кривые второго порядка. Если секущую плоскость выбрать параллельной круговому основанию конуса, то в сечении получится окружность. Если секущая плоскость имеет только одну общую точку с конусом, его вершину, то получится сечение типа 5; если она содержит вершину и касательную к конусу, то мы получаем сечение типа 8 (рис. 6,б); если секущая плоскость содержит две образующие конуса, то в сечении получается кривая типа 4 (рис. 6,а); при переносе вершины в бесконечность конус превращается в цилиндр, и если при этом плоскость содержит две образующие, то получается сечение типа 6.
Если на окружность смотреть под косым углом, то она выглядит как эллипс. Взаимосвязь между окружностью и эллипсом, известная еще Архимеду, становится очевидной, если окружность X2 + Y2 = a2 с помощью подстановки X = x, Y = (a/b) y преобразовать в эллипс, заданный уравнением (3a). Преобразование X = x, Y = (ai/b) y, где i2 = -1, позволяет записать уравнение окружности в виде (4a). Это показывает, что гиперболу можно рассматривать как эллипс с мнимой малой осью, или, наоборот, эллипс можно рассматривать как гиперболу с мнимой сопряженной осью.
Соотношение между ординатами окружности x2 + y2 = a2 и эллипса (x2/a2) + (y2/b2) = 1 непосредственно приводит к формуле Архимеда A = ?ab для площади эллипса. Кеплеру была известна приближенная формула ??(a + b) для периметра эллипса, близкого к окружности, но точное выражение было получено лишь в 18 в. после введения эллиптических интегралов. Как показал Архимед, площадь параболического сегмента составляет четыре третьих площади вписанного треугольника, но длину дуги параболы удалось вычислить лишь после того, как в 17 в. было изобретено дифференциальное исчисление.
КОНИЧЕСКИЕ СЕЧЕНИЯ         
линии пересечения круглого конуса (см. Коническая поверхность) с плоскостями, не проходящими через его вершину. В зависимости от взаимного расположения конуса и секущей плоскости получают три типа конических сечений: эллипс, параболу, гиперболу.
Конические сечения         

линии, которые получаются сечением прямого кругового Конуса плоскостями, не проходящими через его вершину. К. с. могут быть трёх типов:

1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения есть замкнутая овальная кривая - Эллипс; окружность как частный случай эллипса получается, когда секущая плоскость перпендикулярна оси конуса.

2) Секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая - Парабола, целиком лежащая на одной полости.

3) Секущая плоскость пересекает обе полости конуса; линия пересечения - Гипербола - состоит из двух одинаковых незамкнутых, простирающихся в бесконечность частей (ветвей гиперболы), лежащих на обеих полостях конуса.

С точки зрения аналитической геометрии К. с.- действительные нераспадающиеся Линии второго порядка.

В тех случаях, когда К. с. имеет центр симметрии (центр), т. е. является эллипсом или гиперболой, его уравнение может быть приведено (путём перенесения начала координат в центр) к виду:

a11x2+2a12xy + a22y2 = a33.

Дальнейшие исследования таких (называемых центральными) К. с. показывают, что их уравнения могут быть приведены к ещё более простому виду:

Ах2 + Ву2= С, (1)

если за направления осей координат выбрать т. н. главные направления - направления главных осей (осей симметрии) К. с. Если А и В имеют одинаковые знаки (совпадающие со знаком С), то уравнение (1) определяет эллипс; если А и В разного знака, то - гиперболу.

Уравнение параболы привести к виду (1) нельзя. При надлежащем выборе осей координат (одна ось координат - единственная ось симметрии параболы, другая - перпендикулярная к ней прямая, проходящая через вершину параболы) её уравнение можно привести к виду:

y2 = 2рх.

К. с. были известны уже математикам Древней Греции (например, Менехму, 4в. до н. э.); с помощью этих кривых решались некоторые задачи на построение (удвоение куба и др.), оказавшиеся недоступными при использовании простейших чертёжных инструментов - циркуля и линейки. В первых дошедших до нас исследованиях греческие геометры получали К. с., проводя секущую плоскость перпендикулярно к одной из образующих, при этом, в зависимости от угла раствора при вершине конуса (т. е. наибольшего угла между образующими одной полости), линия пересечения оказывалась эллипсом, если этот угол -острый, параболой, если - прямой, и гиперболой, если - тупой. Наиболее полным сочинением, посвященным этим кривым, были "Конические сечения" Аполлония Пергского (около 200 до н. э.). Дальнейшие успехи теории К. с. связаны с созданием в 17 в. новых геометрических методов: проективного (французские математики Ж. Дезарг, Б. Паскаль) и в особенности координатного (французские математики Р. Декарт, П. Ферма).

При надлежащем выборе системы координат уравнение К. с. может быть приведено к виду:

y2 = 2px + λx2 (р и λ постоянные).

Если р ≠ 0, то оно определяет параболу при λ = 0, эллипс при λ < 0, гиперболу при λ > 0. Геометрическое свойство К. с., содержащееся в последнем уравнении, было известно уже древнегреческим геометрам и послужило для Аполлония Пергского поводом присвоить отдельным типам К. с. названия, сохранившиеся до сих пор: слово "парабола" (греческого parabole) означает приложение (т. к. в греческой геометрии превращение прямоугольника данной площади y2 в равновеликий ему прямоугольник с данным основанием 2p называлось приложением данного прямоугольника к этому основанию); слово "эллипс" (греческий élleipsis) - недостаток (приложение с недостатком), слово "гипербола" (греческий hyperbole) - избыток (приложение с избытком).

С переходом к современным методам исследования стереометрическое определение К. с. было заменено планиметрическими определениями этих кривых как геометрических мест на плоскости. Так, например, эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух данных точек (фокусов) имеет данное значение.

Можно дать другое планиметрическое определение К. с., охватывающее все три типа этих кривых: К. с.- геометрическое место точек, для каждой из которых отношение её расстояний до данной точки ("фокуса") к расстоянию до данной прямой ("директрисы") равно данному положительному числу ("эксцентриситету") е. Если при этом е < 1, то К. с.- эллипс; если е > 1, то - гипербола; если е = 1, то - парабола.

Интерес к К. с. всегда поддерживался тем, что эти кривые часто встречаются в различных явлениях природы и в человеческой деятельности. В науке К. с. приобрели особенное значение после того, как немецкий астроном И. Кеплер открыл из наблюдений, а английский учёный И. Ньютон теоретически обосновал законы движения планет, один из которых утверждает, что планеты и кометы Солнечной системы движутся по К. с., в одном из фокусов которого находится Солнце. Следующие примеры относятся к отдельным типам К. с.: параболу описывает снаряд или камень, орошенный наклонно к горизонту (правильная форма кривой несколько искажается сопротивлением воздуха); в некоторых механизмах пользуются зубчатыми колёсами эллиптической формы ("эллиптическая зубчатка"); гипербола служит графиком обратной пропорциональности, часто наблюдающейся в природе (например, закон Бойля - Мариотта).

Лит.: Александров П. С., Лекции по аналитической геометрии, М., 1968; Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959.

В. И. Битюцков.

Рис. к ст. Конические сечения.

Βικιπαίδεια

Коническое сечение

Кони́ческое сече́ние, или ко́ника, — пересечение плоскости с поверхностью прямого кругового конуса. Существует три главных типа конических сечений: эллипс, парабола и гипербола, кроме того, существуют вырожденные сечения: точка, прямая и пара прямых. Окружность можно рассматривать как частный случай эллипса. Кроме того, параболу можно рассматривать как предельный случай эллипса, один из фокусов которого бесконечно удалён.

Конические сечения могут быть получены как пересечение плоскости с двусторонним конусом

a 2 z 2 = x 2 + y 2 {\displaystyle a^{2}z^{2}=x^{2}+y^{2}} (в декартовой системе координат)

Здесь

a = tg θ {\displaystyle a=\operatorname {tg} \theta }
θ {\displaystyle \theta }  — угол между образующей конуса и его осью.

Если плоскость проходит через начало координат, то получается вырожденное сечение. В невырожденном случае,

  • если секущая плоскость пересекает все образующие конуса в точках одной его полости, получаем эллипс,
  • если секущая плоскость параллельна одной из касательных плоскостей конуса, получаем параболу,
  • если секущая плоскость пересекает обе полости конуса, получаем гиперболу.

Уравнение кругового конуса квадратично, стало быть, все конические сечения являются квадриками, также все квадрики плоскости являются коническими сечениями (хотя две параллельные прямые образуют вырожденную квадрику, которая не может быть получена как сечение конуса, но она может быть получена как сечение цилиндра — вырожденного конуса, и обычно считается «вырожденным коническим сечением»).

Τι είναι КОНИЧЕСКИЕ СЕЧЕНИЯ: АНАЛИТИЧЕСКИЙ ПОДХОД - ορισμός